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INSTABILI'TIES IN THE FLOW OF BOILING LIQUID 

By A. H. Stenning and T. N. Veeiroglu 

During t he  t h i r d  six-monthly period of the project ,  two-component 

two-phase flow experiments using air  and water have been completed, and 

one-component two-phase flow experiments using Freon-11 have been s ta r ted .  

Since they pe r t a in  t o  a concluded phase of the  work, the  results of t he  

experimental and ana ly t ica l  program on two-component two-phaee flow haw 

been presented as a separate repor t  L 1 J .  The first series of experiments 

uebg the Freon-11 apparatus were completed during t h e  mamer of 1964. A 

second series of experiments is now in progress after some changee t o  the 

apparatus which resul ted i n  a reduction of permanent inlet pressure drop 

and the inlet i n e r t i a  inherent  t o  the  system geometry. 

da t e  ind ica t e  t h a t  a one-component two-phase horizontal  flow system is 

more stable than a two-canponent two-phase downward flow system, probably 

due t o  t h e  increase in s l i p  and the s t ab i l i z ing  effect of convective heat  

t ransfer .  

t e m d  "Thermal Two-Phase Flow Oscillations" and nPressure Drop Two-Phase 

Flow Oscillations1I have been encountered. These o s c i l l a t i o n s  are charac- 

t e r i zed  by much l a r g e r  per iods than those of ltregularlt two-phase flow 

osc i l l a t ions ;  e.g. bo seconds and 30 seconds pe r  cycle  respec t ive ly  as 

compared with about 3 seconds per cycle  for regular  o sc i l l a t ions .  Thermal 

o s c i l l a t i o n s  give r i s e  t o  l a rge  pressure osc i l la t ions ,  and could therefore  

be more dangerous. 

The results to- 

During Freon-11 experiments, two new types of flow i n s t a b i l i t y ,  



A s  t he  r e s u l t s  of two-phase two-component air-water invest igat ion 

have already been reported, the present  r e p o r t  w i l l  be confined t o  the 

preliminary results o f  the Freon-11 experiments which are s t i l l  in 

progress. 

FREON-11 APPARATllS 

A general  descr ipt ion of t he  Freon-11 Apparatus was presented 

earlier 12J when it was being b u i l t .  

t i o n s  and improvements have been incorporated i n  the apparatus. 

t es t  sect ion (Fig. 1) cons i s t s  of a surge tank, an i n l e t  valve, a heater ,  

and an exit valve with some tubing i n  between t o  f a c i l i t a t e  various 

connections. A l l  t he  tubing i n  the systom, including the heater, i s  made 

of nichrome with 3/16 inch O.D. and 0.1475 inch I.D. 

37 1/2 inches long, i t s e l f  i s  used as the e l e c t r i c a l  r e s i s t ance  f o r  

providing heat input. 

tube, and power input up t o  5 k. W. can be obtained with a maximum cur ren t  

of 200 amperes. 

regulator t o  obtain t h e  desired hea t  input. 

l o s s e s  t o  a minimum, a vacuum jacke t  is  b u i l t  around the heater,  which 

contains a guard heater and a r ad ia t ion  guard. 

connected t o  a vacuum pump t o  evacuate air  and other  gases. 

calculated from the enthalpy increase of t h e  f l o w  was within 3 per  cent  o f  

t h a t  found from e l e c t r i c a l  measurements, i nd ica t ing  an e f f i c i e n t  thermal 

insulat ion) .  

included i n  the  system t o  make sure t h a t  no evaporation starts in t h e  

l i q u i d  before reaching the  heater .  

constant ove ra l l  pressure drop across  the  system, i s  made o f  c l e a r  l u c i t e  

However, since then some modifica- 

The 

The heater tube, 

D. C. voltage is  applied a t  t h e  ends o f  t he  heater 

The voltage across the  heater i s  adjusted by means of a 

I n  order t o  reduce the hea t  

The vacuum jacke t  is  

(Reat input  

A t  the inlet  s ide  of the heater  a s i g h t  g l a s s  tube i s  

The surge tank, which provides a 
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so t h a t  t h e  l i qu id  l e v e l  i s  v i s ib l e .  

check valve f o r  pumping i n  air  as needed, since it w a s  found out  t h a t  the 

trapped air  would flow out  through the system i n  between the  experiments 

and be replaced by Freon-11 vapor which i n  turn would condense during t h e  

experiments as pressures were increased. 

tan thermocouples were inser ted in to  the system before and after the heater 

t o  measure the  temperatures of F’reon-11. 

couples w e r e  f ixed t o  the  outer  w a l l  o f  the heater for measuring heater  

temperatures. 

of 0.0015 inch th ick  mica flakes. Three bourdon tube type Heise pressure 

gages and two s t r a i n  gage type pressure transducers were i n s t a l l ed  i n  the  

test sec t ion  t o  measure 

system, and sense the pressure osc i l la t ions .  The pressure osc i l l a t ions  

were recorded on a Sanborn cha r t  recorder. 

I t  is  provided with a bicycle type 

Two flow-through copper-constan- 

Five copper-constantan themo- 

They were e l e c t r i c a l l y  insulated from the  heater  by means 

the pressures a t  various s t a t i o n s  across t h e  

The experimental set-up included a Freon-11 container a t  the  upstream 

side of t h e  tes t  section, and a Freon-31 recovery system a t  t h e  downstream 

side. 

less-steel t o  withstand pressures  up t o  150 p.s.i.g. During the experi- 

ments Freon-11 i n  the  container i s  pressurized by means o f  high pressure 

ni t rogen and a constant pressure regulating valve in order t o  obtain a 

steady and continuous flow i n t o  the surge tank, v i a  a f i l ter ,  a micrometer 

cont ro l  valve and a rotameter. 

saturated Freon-11 vapor and l i qu id  leaving t h e  tes t  sec t ion  is  l ed  i n t o  

the  recovery system. 

Freon-11 i s  condensed by making it run through a h e l i c a l  aluminum tube 

around which refr igerated br ine a t  32°F. c i rculates .  

t o  recover 80 t o  90 per cent  of t h e  Freon-11 used. 

The Freon-11 container has a volume of 4 ft3 and i s  made of s ta in-  

Superheated Freon-11 o r  a mixture of 

This system i s  essent ia l ly  a heat exchanger where 

It is  enabling us 
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During the  f irst  series of experlments t h e  surge tank was not  

ins ta l led .  

viding a constant pressure,  and the  t es t  sec t ion  s t a r t e d  from the  Freon-11 

tank. 

Consequently, t h e  supply tank acted a s  the  surge tank, pro- 

EXPERIMENTAL PROCEDURE 

I n  experiments f o r  determining t h e  onset of o sc i l l a t ions  and the 

influence o f  the parameters a f f ec t ing  the  osc i l l a t ions ,  first, l iquid  

Freon-11 was run through t h e  system with the  i n l e t  valve p a r t l y  closed 

and t h e  exi t  valve f u l l y  open, af ter  pressur iz ing  the  Freon-11 i n  the  con- 

ta iner  up t o  50 t o  60 p.s.i.g. by means of Nitrogen gas. 

valve kept  t h e  tank pressure constant  within 5 0.1 p.s.i. during the  expe- 

riments. 

(about100 w a t t s ) .  

level by 50 w a t t  increments. 

w a s  allowed t o  e lapse before the  next change. 

unwanted t r ans i en t  i n s t a b i l i t i e s .  

the  Freon-11 flow rate was increased as required by ad jus t ing  t h e  cont ro l  

valve so t h a t  t he  system w a s  always operat ing within t h e  s t ab le  zone a t  

steady s t a t e .  

s e t  so  as t o  provide a predetermined e x i t  pressure drop and the con t ro l  

valve w a s  set  t o  provide a predetermined flow rate. 

w a s  slowly opened till the  onset  of two phase flow o s c i l l a t i o n s  was noticed. 

These o s c i l l a t i m s  could be observed from the per iodic  motion of  the pres- 

sure  gage po in te r s  and a l s o  from the pressure recordings.  

boundary the  room ternperatxre, barometric pressure,  Freon-11 mass flow 

r a t e ,  hea te r  voltage and current ,  and pressure and temperature (thermocouple) 

The regula tor  

Then the  heater  was started a t  a r e l a t i v e l y  low power level  

I ts  power w a s  then increased t o  a predetermined t e s t  

After each change in power, about 10 minutes 

This procedure prevented 

During the  hea ter  power l e v e l  increases ,  

After t h e  t e s t  power l e v e l  w a s  reached, t h e  exit valve was 

Then the  i n l e t  valve 

A t  t h e  s t a b i l i t y  
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readings a t  various s t a t ions  along the  test system were recorded. 

t he  earlier experiments indicated that there w a s  no not iceable  hysteresis 

effect, the  s t a b i l i t y  boundary w a s  always reached from the  stable zone as 

t h i s  procedure resulted i n  some savings in time and Freon-ll. 

t h e  readings, the flow rate w a s  s l i g h t l y  reduced by c los ing  dawn on t h e  

cont ro l  valve. This caused the  system t o  operate i n  the  unstable zone. A t  

t h i s  stage, pressure recordings were made fo r  more accurate  frequency cal- 

culations.  

boundary and within the  unstable region fo r  one experiment. 

Since 

A f t e r  taking 

Figs. 2(a)  and (b )  show the  pressure recordings a t  the  stability 

For each s t a b i l i t y  boundary expe rben t  some hea t  transfer measurements 

were car r ied  out  t o  determine the  f r a c t i o n  of  hea t  transfer independent of 

flow rate. 

exception of t h e  control  valve s e t t i n g  w e r e  kept  as they were a t  the  sta-  

b i l i t y  boundary. By increasing the control  valve opening, t h e  Freon-11 

flow rate w a s  increased, and the corresponding flow, power, pressure and 

temperature readings were taken. 

During each of these  experiments, a l l  t h e  se t t i ngs  with t h e  

The above mentioned procedure w a s  repeated for various flow rates, 

exit valve se t t i ngs  and heater  power lsvels. 

system geometry has been changed once. 

out without the  surge tank; and present experiments are being car r ied  out 

with t h e  surge tank included. 

During the  experiments the  

The earlier experiments were carried 

During the  course of experiments, i n  addition t o  t h e  "regular" two 

phase flow instability, two d i s t i n c t l y  d i f f e ren t  types of i n s t a b i l i t y  

have been discovered. 

obtain an understanding of these new ins t ab i l i t i e s .  

series of experiments on regular two-phase flow o s c i l l a t i o n s  are completed, 

t he  above mentioned osc i l l a t ions  w i l l  be systematically investigated . 

Some preliminary tests have been carr ied out  to 

After the  present  
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Experimental Resul ts  

Analyses made earlier 131 ind ica te  that the  parameters a f f ec t ing  

the  onset of one-component two phase flow o s c i l l a t i o n s  are overa l l  

density r a t i o ,  heat f r ac t ion  expended i n  removing subcooling, hea t  

t ransfer  f rac t ion  independent of mass flow rate, system geometry defined 

as dimensionless i n l e t  ducting length and exit  ducting length, dynamic 

pressure, i n l e t  pressure drop f r ac t ion  and other  pressure drop f r ac t ions  

across the heater  and a t  t he  exit. Because of t he  interdependence of t h e  

parmeters ,  it was not possible  t o  keep a l l  but two constant and Fnveeti- 

gate  t h e i r  re la t ionship.  Under the circumstances, i n  order t o  reduce the  

number of var iables ,  first overal l  dens i ty  r a t i o s  (l/rexit) were p lo t ted  

against  the  heat f r ac t ion  used i n  removing subcooling ( c )  f o r  a l l  of the 

s t a b i l i t y  onset experiments f o r  a given geometry (Fig.  3) .  As seen from 

the  figure, points  eorresponding t o  a ce r t a in  power l e v e l  of the  hea ter  

fall on a smooth curve. 

the system. 

from Figure 3, and the  inlet  f r ac t ion  of pressure drop (y)  and the  over- 

a l l  density r a t i o  ( I / reXit)  are determined f o r  each such point. 

t o  keep c constant, some of t h e  po in ts  have been found by in te rpola t ion  

between the  two nearest  onset points .  

values of c as seen i n  Fig. 4. 

and below unstable. 

overall  densi ty  r a t i o  decreases a t ah i l i t y ;  ( b )  increase i n  i n l e t  f r ac t ion  

of pressure drop increases stabil i ty;  and ( c )  increase i n  subcooling 

decreases s t a b i l i t y .  

the  corresponding stable points  had higher inlet  pressure drop f r ac t ions  

than t h a t  of the onset point,  and the  unstable point s  had lower inlet  

These curves are in f a c t  operating curves f o r  

Then the points  corresponding t o  a constant c are se lec ted  

I n  order 

The r e s u l t s  are p lo t ted  f o r  various 

The region above each curve is  stable, 

From Figure 4, it can be seen t h a t  ( a )  increase i n  

Experiments a l so  showed t h a t  f o r  a given subcooling 
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pressure drop f rac t ions .  

earlier analog computer s tud ie s  of similar systems. 

A l l  of  the above observations were indicated by 

. 
If we compare the results of these one-component two-phase horizontal  

flow experiments with those of two-component two-phase downward flow 

experiments L l J ,  it becomes c l e a r  that a one-component two-phase flow is  

much more s tab le .  I n  o ther  words, a smaller inlet f r ac t ion  y of pressure 

drop is  required t o  s t a b i l i z e  a one-component two-phase flow system, or 

the system w i l l  t o l e r a t e  much higher density r a t i o s  f o r  a given y. This 

is  probably caused by dependence of heat  transfer on t h e  mass flow rate, 

and s l i p ,  both of which tend t o  make a system more s table .  A qua l i t a t ive  

comparison awaits a deta i led  computer study. 

As mentioned earlier, two new types of two phase flow o s c i l l a t i o n s  

were encountered during the  experiments. 

from each other ,  one of t he  new types - which seems t o  be caused by film 

bo i l ing  hea t  flux cha rac t e r i s t i c s  - w i l l  be ca l led  Thermal Two-Phase 

Flow Osci l la t ions" ,  and the  other  type - which seems t o  be caused by 

bo i l ing  flow pressure drop cha rac t e r i s t i c s  - w i l l  be ca l led  "Pressure Drop 

Two-Phase Flow Oscillations1!. 

flow o s c i l l a t i o n s  could appropriately be called "Density Wave Two-Phase 

Flow Osci l la t ionsf1 since they are caused primarily by t he  in te rac t ion  of 

densi ty  and flow rate  changes. 

I n  order t o  d is t inguish  them 

For t he  same reason, the regular two phase 

We can enumerate the  i n i t i a l  observations about and the  dis t inguishing 

features of the  new types of o sc i l l a t ions  as follows: 

I. Thermal Two-Phase Flow Oscillations:  

a )  They seem t o  be made by the  superimposition of two d i f f e r e n t  

waves; one having a r e l a t i v e l y  l a w  frequency, and the  other  

having higher frequency and s t a r t i ng  and dying of f  a t  regular 
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i n t e rva l s .  Figure 5 shows a pressure recording of these o s c i l l a -  

t ions.  

o s c i l l a t i o n s  cons i s t s  of dens i ty  wave o s c i l l a t i o n s .  

There are l a rge  v a r i a t i o n s  (up t o  40%) i n  f l o w  rate during each 

cycle of the  o s c i l l a t i o n .  

Pressure o s c i l l a t i o n s  are very f i e r c e  during the  p a r t  of the 

cycle when high frequency wave8 are prominent. 

amplitudes of more than 100 p.s.i.g. were observed when ove ra l l  

system pressure drops were only 50 p.s.i.g. 

Heise pressure gages were damaged. 

o s c i l l a t i o n s  could be t h e  most dangerous of t h e  three. 

They start a t  about the same flow conditions as the dens i ty  wave 

osc i l l a t ions .  I f  the system i s  made more unstable, by e i t h e r  

decreasing the inlet  pressure drop or  decreasing t h e  flow rate 

(i.e., increasing the  ove ra l l  densi ty  r a t i o ) ,  t he  thermal 

o s c i l l a t i o n s  w i l l  be replaced by t h e  densi ty  wave o s c i l l a t i o n s .  

A t  t h i s  stage, the amplitude of pressure o s c i l l a t i o n s  a r e  much 

less than those produced by the  thermal i n s t a b i l i t y .  It seems 

t h a t  the thermal two-phase flow o s c i l l a t i o n s  are t r iggered by 

densi ty  wave o s c i l l a t i o n s  i n  first place, and they can a l s o  be 

eliminated by increasing the i n t e n s i t y  of densi ty  wave two-phase 

It  seems t h a t  t he  high frequency component of these 

b) 

e)  

Pressure 

As a result, two 

It seems t h a t  t h i s  type o f  

d)  

flow osc i l l a t ions .  

They are only observed a t  r e l a t i v e l y  high heat t r a n s f e r  rates e)  

(e.g., fo r  heat f luxes more than 17,000 B.T.U./hr.ft. 2 ), although 

density wave o s c i l l a t i o n s  could be s t a r t e d  with lower heat t rans-  

f e r  r a t e s  t o o .  
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f) During the thermal o s c i l l a t i o n s  the e x i t  end of the heater 

operates i n  the f i l m  bo i l i ng  region. There are l a r g e  amplitude 

(e.g., 100'F.) w a l l  temperature osc i l l a t ions  (Fig. 6), i n  phase 

with flow and pressure osci l la t ions,  a t  the exit end of the  

heater. 

in the case of densi ty  wave osci l la t ions,  and in  the  case of 

pressure drop two-phase flow o s c i l l a t i o n s  the  maxhum change in 

w a l l  temperature during a cycle was not more than 1 o r  2OF.) 

(No w a l l  temperature o s c i l l a t i o n s  have been observed 

I1 . Pressure Drop Two-Phase Flow Oscillations:  

a) They have frequencies between those of densi ty  wave o s c i l l a t i o n s  

and thennal osc i l l a t ions .  

t he  frequencies of t h e  densi ty  wave, thennal and pressure drop 

type o s c i l l a t i o n s  were of t h e  order of O b 3  c.p.s., 0.015 c.P.I., 

and 0.03 c.p.3. respectively.  

I n  general, the  amplitude of pressure o s c i l l a t i o n s  a r e  not as 

l a r g e  as those of the two other  types o f  i n s t a b i l i t y  (Fig. 7). 

They happen i n  a bounded region of ove ra l l  dens i ty  r a t i o s ,  outs ide 

of which (i.e., fo r  d e n s i t y  r a t i o s  lower than the lower boundary 

densi ty  r a t i o  and higher than tho higher boundary densi ty  r a t i o )  

t h e  system i s  s t a b l e  f o r  t h i s  type of o sc i l l a t ions .  

t o  occur whenever the pressure drop versus flow curve f o r  t h e  

heater  has a negative slope a t  the operating point.  

This bounded region can be within the stable zone of densi ty  

wave (and fo r  t h a t  m t t e r ,  t h e m d  type) o sc i l l a t ions .  I n  

other words, pressure drop osc i l l a t ions  can take place a t  lower 

densi ty  r a t i o s  than the other types of two-phase flow osc i l l a t ions .  

For example, during our experiments, 

b) 

c )  

They seem 

d )  
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e )  They can be stopped by increasing the i n l e t  pressure drop, just 

as  in  the case of  other types o f  two-phase flow i n s t a b i l i t i e s .  
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